Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063853

RESUMEN

High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.


Asunto(s)
Células Madre Adultas , Diabetes Mellitus Tipo 2 , Proteínas de Drosophila , Resistencia a la Insulina , Animales , Femenino , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azúcares de la Dieta/metabolismo , Células Madre Adultas/metabolismo , Células Madre Neoplásicas/metabolismo , Obesidad
2.
Cell Death Discov ; 9(1): 4, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36617578

RESUMEN

Tubulin s-palmitoylation involves the thioesterification of a cysteine residue in tubulin with palmitate. The palmitate moiety is produced by the fatty acid synthesis pathway, which is rate-limited by acetyl-CoA carboxylase (ACC). While it is known that ACC is phosphorylated at serine 79 (pSer79) by AMPK and accumulates at the spindle pole (SP) during mitosis, a functional role for tubulin palmitoylation during mitosis has not been identified. In this study, we found that modulating pSer79-ACC level at the SP using AMPK agonist and inhibitor induced spindle defects. Loss of ACC function induced spindle abnormalities in cell lines and in germ cells of the Drosophila germarium, and palmitic acid (PA) rescued the spindle defects in the cell line treated transiently with the ACC inhibitor, TOFA. Furthermore, inhibition of protein palmitoylating or depalmitoylating enzymes also induced spindle defects. Together, these data suggested that precisely regulated cellular palmitate level and protein palmitoylation may be required for accurate spindle assembly. We then showed that tubulin was largely palmitoylated in interphase cells but less palmitoylated in mitotic cells. TOFA treatment diminished tubulin palmitoylation at doses that disrupt microtubule (MT) instability and cause spindle defects. Moreover, spindle MTs comprised of α-tubulins mutated at the reported palmitoylation site exhibited disrupted dynamic instability. We also found that TOFA enhanced the MT-targeting drug-induced spindle abnormalities and cytotoxicity. Thus, our study reveals that precise regulation of ACC during mitosis impacts tubulin palmitoylation to delicately control MT dynamic instability and spindle assembly, thereby safeguarding nuclear and cell division.

3.
Aging Cell ; 19(8): e13191, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32666649

RESUMEN

Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Dinámicas Mitocondriales/genética , Células Madre/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Drosophila , Femenino , Masculino , Transducción de Señal
4.
Stem Cell Reports ; 11(3): 811-827, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30122445

RESUMEN

In developing organisms, proper tuning of the number of stem cells within a niche is critical for the maintenance of adult tissues; however, the involved mechanisms remain largely unclear. Here, we demonstrate that Thickveins (Tkv), a type I bone morphogenetic protein (BMP) receptor, acts in the Drosophila developing ovarian soma through a Smad-independent pathway to shape the distribution of BMP signal within the niche, impacting germline stem cell (GSC) recruitment and maintenance. Somatic Tkv promotes Egfr signaling to silence transcription of Dally, which localizes BMP signals on the cell surface. In parallel, Tkv promotes Hh signaling, which promotes escort cell cellular protrusions and upregulates expression of the Drosophila BMP homolog, Dpp, forming a positive feedback loop that enhances Tkv signaling and strengthens the niche boundary. Our results reveal a role for non-canonical BMP signaling in the soma during GSC establishment and generally illustrate how complex, cell-specific BMP signaling mediates niche-stem cell interactions.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Germinativas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Animales , Diferenciación Celular , Drosophila/citología , Drosophila/crecimiento & desarrollo , Femenino , Células Germinativas/metabolismo , Masculino , Ovario/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...